隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設(shè)備上運行多模態(tài)推理任務。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時間敏感網(wǎng)絡(luò),為L5級自動駕駛提供10Gbps級實時數(shù)據(jù)傳輸能力?!斑吘売嬎悴皇窃贫说奶娲?,而是AI能力的延伸。”倍聯(lián)德CTO李明表示,“通過精確的分工策略,我們正在讓每一輛自動駕駛汽車、每一臺工業(yè)機器人都擁有一個‘本地化超級大腦’。”在這場智能變革中,邊緣計算與AI的深度融合,正重新定義技術(shù)與產(chǎn)業(yè)的邊界。在智能制造中,邊緣計算可實時監(jiān)測設(shè)備狀態(tài)并觸發(fā)預警,避免生產(chǎn)線停機風險。廣東工業(yè)自動化邊緣計算解決方案
隨著6G、AI大模型與邊緣計算的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達6710億的醫(yī)療大模型壓縮至邊緣設(shè)備可運行范圍,支持基層醫(yī)院在本地完成從術(shù)前規(guī)劃到術(shù)中決策的全流程AI輔助;數(shù)字孿生工廠:通過邊緣計算實時映射生產(chǎn)線數(shù)據(jù),結(jié)合數(shù)字孿生技術(shù)實現(xiàn)產(chǎn)能預測、能耗優(yōu)化等智能決策,使工廠運營成本降低25%。“邊緣計算不是對云計算的替代,而是智能世界的‘神經(jīng)末梢’?!北堵?lián)德CEO王偉表示。目前,該公司已擁有80余項知識產(chǎn)權(quán),其邊緣計算產(chǎn)品已成功應用于礦山、ARM邊緣計算生態(tài)邊緣計算正在改變我們對分布式系統(tǒng)的看法。
邊緣計算將數(shù)據(jù)處理下沉至設(shè)備端,導致敏感數(shù)據(jù)(如工業(yè)控制指令、用戶健康信息)在邊緣節(jié)點集中存儲。某汽車零部件廠商的案例顯示,其邊緣質(zhì)檢系統(tǒng)因未采用端到端加密,導致30萬條產(chǎn)品缺陷數(shù)據(jù)被竊取,直接經(jīng)濟損失超2000萬元。更嚴峻的是,邊緣節(jié)點與云端的數(shù)據(jù)同步過程易遭中間人攻擊,某風電企業(yè)曾因通信協(xié)議漏洞,導致風機振動數(shù)據(jù)在傳輸中被篡改,引發(fā)非計劃停機。邊緣節(jié)點硬件異構(gòu)性強,從工業(yè)PLC到智能攝像頭,不同設(shè)備的安全防護能力參差不齊。某化工企業(yè)的邊緣安全監(jiān)控系統(tǒng)因使用未修復漏洞的舊版操作系統(tǒng),被植入惡意軟件后持續(xù)竊取有毒氣體泄漏數(shù)據(jù),險些釀成重大事故。此外,邊緣計算平臺常采用虛擬化技術(shù),若宿主系統(tǒng)存在提權(quán)漏洞,攻擊者可橫向滲透至整個邊緣網(wǎng)絡(luò)。
倍聯(lián)德突破傳統(tǒng)MEC廠商“設(shè)備+平臺”的單一模式,聚焦垂直行業(yè)的重要痛點,打造“硬件+算法+服務”的全棧解決方案。在工業(yè)互聯(lián)網(wǎng)領(lǐng)域,其“云+邊+端”協(xié)同架構(gòu)已應用于200余家制造企業(yè)。通過SERVER平臺實現(xiàn)設(shè)備管理、算法管理、數(shù)據(jù)管理的統(tǒng)一調(diào)度,結(jié)合邊緣節(jié)點的實時分析能力,使某汽車零部件廠商的產(chǎn)線換型時間從4小時縮短至15分鐘,設(shè)備故障預測準確率達92%。在智慧城市建設(shè)中,倍聯(lián)德與深圳某區(qū)相關(guān)部門合作的智能交通項目,通過部署5000個路側(cè)邊緣節(jié)點,實時分析交通流量、事故位置等數(shù)據(jù),使高峰時段擁堵指數(shù)下降25%,應急車輛通行時間縮短40%。該方案還創(chuàng)新引入數(shù)字孿生技術(shù),在邊緣端構(gòu)建城市交通的實時鏡像,為規(guī)劃部門提供動態(tài)決策支持。能源行業(yè)通過邊緣計算實現(xiàn)電網(wǎng)設(shè)備的預測性維護,降低非計劃停機損失。
在自動駕駛場景中,車載邊緣計算單元需在10毫秒內(nèi)完成障礙物識別、路徑規(guī)劃等決策。若依賴云端處理,數(shù)據(jù)往返延遲可能超過100毫秒,足以引發(fā)致命事故。某新能源車企的測試數(shù)據(jù)顯示,邊緣計算使車輛避障響應速度提升8倍,事故率下降60%。此外,智慧交通信號燈通過邊緣節(jié)點實時分析車流數(shù)據(jù),動態(tài)調(diào)整配時方案,使城市擁堵指數(shù)降低25%。在半導體封裝產(chǎn)線,邊緣計算設(shè)備可實時分析攝像頭采集的圖像數(shù)據(jù),在0.1秒內(nèi)識別芯片引腳偏移等缺陷,較云端處理效率提升20倍。某光伏企業(yè)部署的邊緣AI質(zhì)檢系統(tǒng),將漏檢率從3%降至0.2%,同時減少90%的云端數(shù)據(jù)傳輸量,年節(jié)省帶寬成本超千萬元。邊緣計算驅(qū)動的智能網(wǎng)關(guān)可實現(xiàn)異構(gòu)協(xié)議轉(zhuǎn)換,解決傳統(tǒng)設(shè)備互聯(lián)互通難題。智能邊緣計算使用方向
邊緣計算正在推動智能制造向更高層次發(fā)展。廣東工業(yè)自動化邊緣計算解決方案
在數(shù)字化轉(zhuǎn)型浪潮中,邊緣計算與云計算作為兩大重要計算范式,正以“互補共生”的姿態(tài)重塑產(chǎn)業(yè)格局。從自動駕駛的毫秒級響應到醫(yī)療急救的生命體征監(jiān)測,從智能工廠的實時質(zhì)量檢測到智慧城市的交通流量優(yōu)化,兩種技術(shù)通過差異化的應用場景定位,共同構(gòu)建起低延遲、高可靠、智能化的數(shù)字基礎(chǔ)設(shè)施。邊緣計算通過將計算資源下沉至數(shù)據(jù)產(chǎn)生源頭,在需要即時響應的場景中展現(xiàn)出不可替代的優(yōu)勢。其重心價值在于消除數(shù)據(jù)傳輸延遲,并保障本地數(shù)據(jù)隱私。廣東工業(yè)自動化邊緣計算解決方案